NEDO再生可能エネルギー分野成果報告会2025 (分野:バイオマス(エネルギーの森))

発表No.: 1-3-11 木質バイオマス燃料等の安定的・効率的な供給・利用システム構築支援事業

広葉樹の早期収穫に向けた森づくりと燃料チップ品質向上・安定供給実証事業

団体名:北アルプス森林組合発表日:2025年7月16日

研究開発項目①

【事業の目的・目標】

□目的

旧薪炭林の短伐期燃料材生産モデルを積雪寒冷地域でも20年以内に確実に循環できる手法を確立するとともに、作業時の生産性を調査して、低コスト高生産性の萌芽更新手法を開発する。

具体的には、根株径、根株高及び根株形の差異による萌芽更新後の資源量の変化並びに萌芽整理の有無による萌芽更新の確実性及び経済性を検証することにより、低コスト高生産性の萌芽更新手法を開発する。

□目標

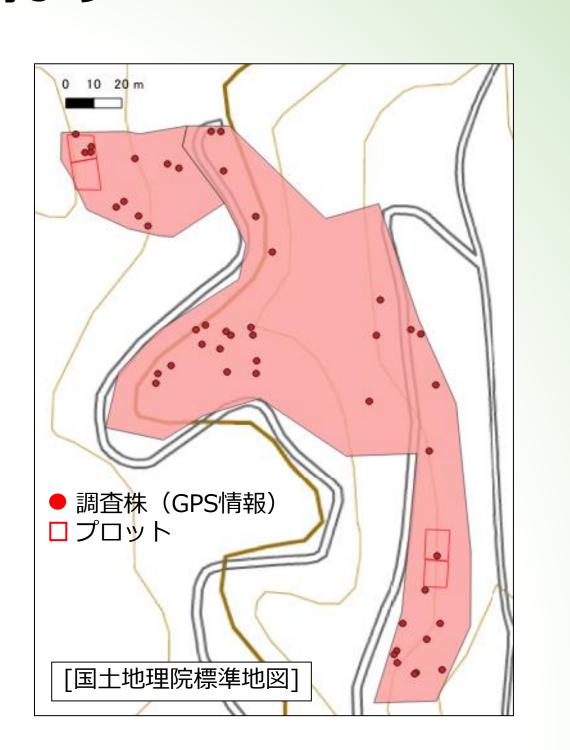
事業期間内目標:林齢5年で「樹高3.7m、胸高直径3.9cm」

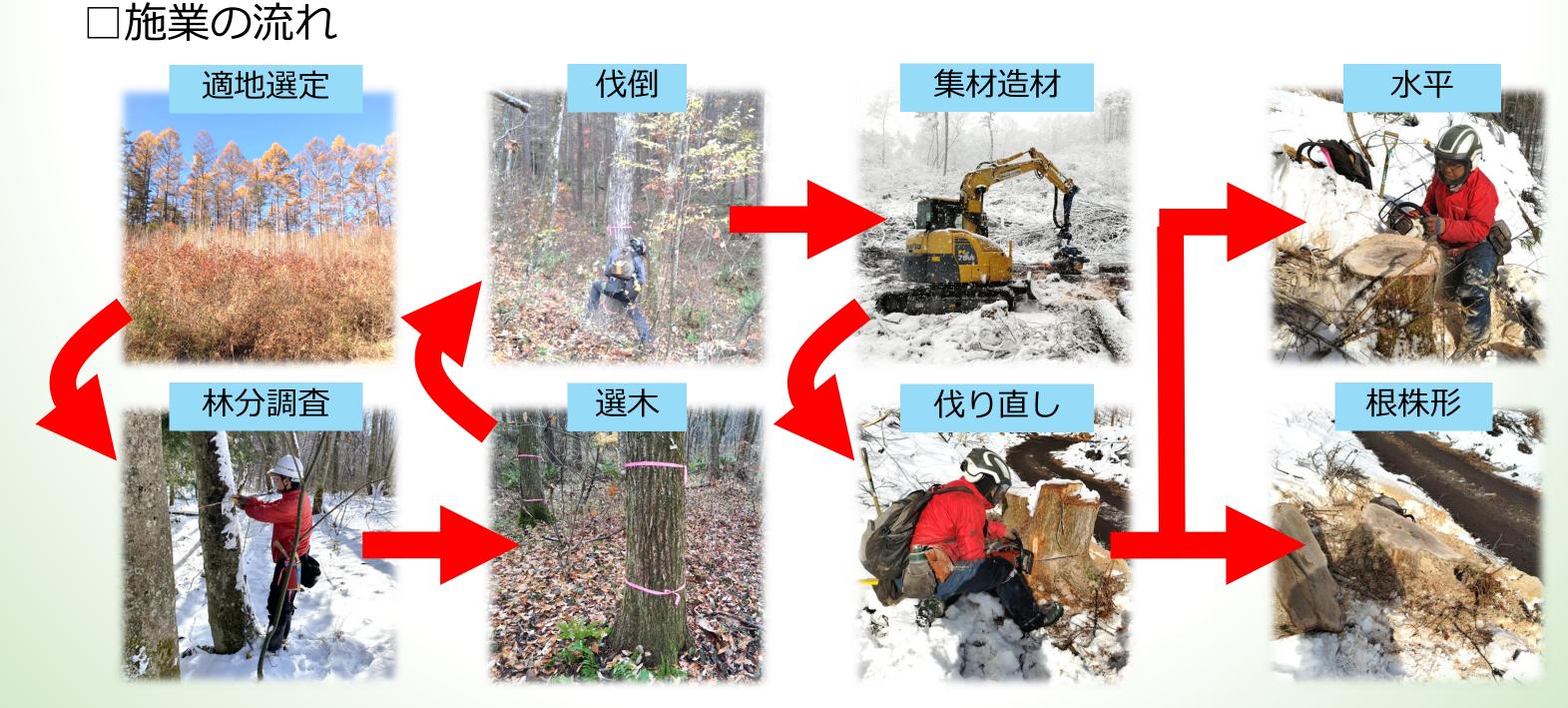
項目

将来目標:伐期20年、収量材積96.6㎡

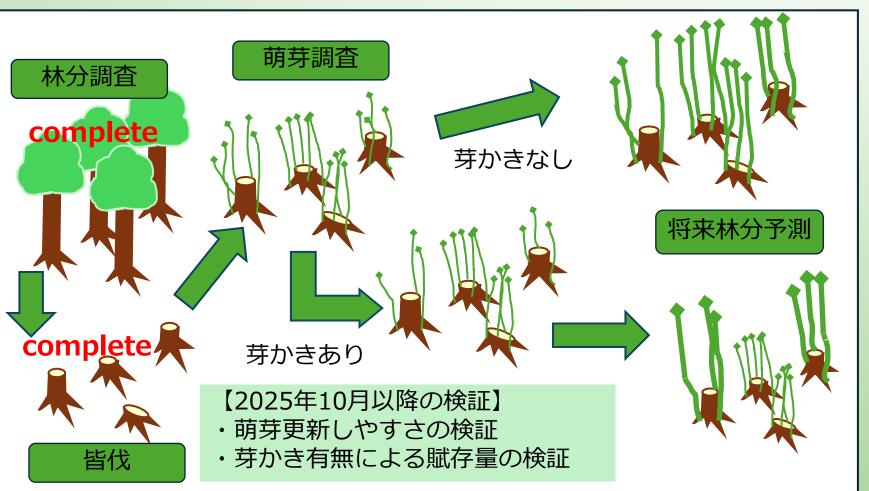
【2024年度の主な成果】

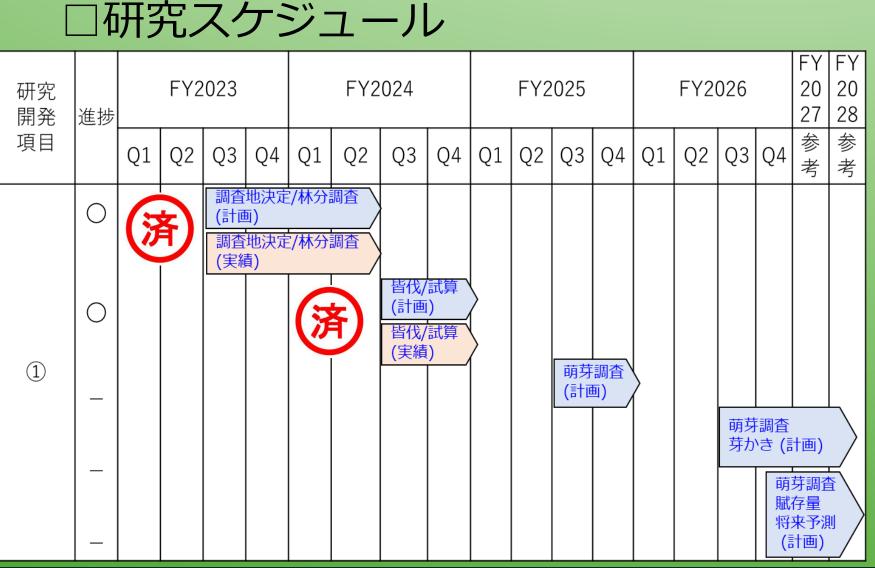
□助成事業実施計画書からの皆伐条件の変更


変更後 変更前 項目 樹種 3種類程度(コナラ/クリ/ホウ) 1種類(コナラ) 根株径 3条件(~20cm/20~40cm/40cm~) 2条件(~30cm/30cm~)※ 2条件(低切り:水平/根株形)※ 3条件(高伐り/低伐り/根株形) 根株高 対象 40本 81本 ※設定根拠:複数の文献情報及び有識者の指導より


結果

□林分調査及び選木結果





【課題と今後の取組】

□今後の取組み (イメージ図)

□将来の林分予測に向けて

研究開発項目②

【事業の目的・目標】

□目的

地域森林資源の特徴である7割を占める広葉樹や、燃料用チップとしては利用されてこなかった林地枝条・剪定枝を実用的なレベルの燃料チップにするための手法を開発する。

□目標

検証項目	事業期間内目標	将来目標
広葉樹チップ粒度最適化	P26orP32(<8mm含)	P26orP32(<8mm無)
林地枝条等燃料チップ化	スクリーンサイズ最適化減容効果、コスト比較等	小型ボイラー供給 ブレンド供給
乾燥コンテナによる乾燥	乾燥後、35%以下	地域内ボイラー供給

【2024年度の主な成果】

□広葉樹チップ粒度最適化

・課題検証結果:広葉樹生材は粗大部多い/広葉樹乾燥材は微細部多い

【検証項目】

- ・設備発注 : 2024年11月発注→2025年7月納品予定
- □林地枝条等燃料チップ化

	サンプリング情報										
項目	検証①	検証②	検証③								
伐採年月	2024.10	2023.11	2025.2								
採取年月日	2024.10.31	2024.11.21	2025.2.4								
種類	針広混合	広葉樹	広葉樹								
葉の有無	あり	なし	なし								
乾燥状態	伐採直後	乾燥1年後	伐採直後								
検証場所	松川村	大町市	池田町								

水分率/かさ密度/減容効果/粒度/生産効率/組成分析

【検証結果】											
	i	検証 ①)	;	検証②)	検証③				
スク リーン	30 mm	40 mm	50 mm	30 mm	40 mm	50 mm	30 mm	40 mm	50 mm		
水分率	水分率 55% 51% 49%			32%	33%	33%	45%	45%			
	⇒水分	をはス	くクリー	ン径に	影響した	とい					
かさ密度 A B	A 360 350 350				290 190	300 200			370 210		
	A :		乾燥後②は低) エネルギー量が大 乾状態、単位はkg/㎡								
粒度分布 A※相当 B	P26 P31 F10	P26 P31 F15	P26 <u>P31</u> F15	P26 P31 F10	P26 P31 F10	P26 P31 F10	P26 P31 F10	P26 P31 F10	P26 P31 F05		
	★ 本										
減容効果	38%	39%	43%	50%	44%	55%	38% 36% 31%				
					に影響しが減容效						

		1	検証 ①)	;	検証②	1	検証③						
	スク リーン	30 mm	40 mm	50 mm	30 mm	40 mm	50 mm	30 mm	40 mm	50 mm				
	生産効率 (㎡/h)	7	9	11	4	3	8	10	20	9				
	⇒生産効率がスクリーン径に影響するかは判断困難 樹種、枝条の条件、オペの技術等複合的な要因が影響													
Ī	【組成分析	斤】												
		7	検証 ①)	検証②			検証③						
	低位 発熱量	7,	700(J/	g)	11	,300(J/	g)	11,200(J/g)						
		⇒低値である①はかさ密度(絶乾時)が小さい影響 ②/③は①よりかさ密度(絶乾時)が大のため高値												
	灰分	2.	7(A3.0	0)	1	.1(A1.5	5)	1	.9(A3.0))				
	区分 A1. 0 A1. 5 A3. 0 A5. 0	灰分 % A≤1.0 A≤1.5 A≤3.0 A≤5.0		燥によ はない	より灰分低値(検証②) いが伐採直後のため②より高値(検証③)									
	C/N比		105			126		119						
		⇒発酵	乾燥の	指標(低値ほ	どが乾燥	促進)							
		リーン 生産効率 (㎡/h) 【組成分析 低位 発熱量 灰分 A1. 0 A1. 5 A3. 0 A5. 0	スク リーン 30 mm 生産効率 (㎡/h) 7 ⇒生産 樹種 【組成分析】 低位 発熱量 7, 一 一 一 一 一 一 一 で分 2. 「 下分 2. 「 下分 2. 「 下分 4≤1.0 A1.5 A3.0 A5.0 A≤5.0 C/N比	スク Jーン mm mm mm 生産効率 (m³/h) 7 9 →生産効率が 樹種、枝条 【組成分析】 検証① 7,700(J/発熱量 7,700(J/発熱量 7,700(J/の分 2.7(A3.0	リーン mm mm mm mm 生産効率 (m³/h) 7 9 11 ⇒生産効率がスクリ 樹種、枝条の条件 【組成分析】 検証① 7,700(J/g) ⇒低値である①はか②/③は①よりかる②/③は①よりかる②/③は①よりかる②/③は①よりかる 2.7(A3.0)	スク リーン mm mm mm mm mm mm mm 30 40 50 30 mm mm mm mm mm mm 生産効率 (㎡/h) 7 9 11 4 ⇒生産効率がスクリーン径(樹種、枝条の条件、オペクを発生、オペクを発生である(リスクを発生である)はかさ密度(2/3は(リスクので変度(2/3は(リスクので変度)(2/3は(リスクので変更)(3)は(リスクので変更)(3)は(リスクので変更)(3)は(リスクので変更)(3)は(リスクので変更)(3)は(リスクので変更)(3)は(リスクので変更)(3)は(リスクので変更)(3)は(リスクので変更)(3)は(リスクのである(1)なりがき密度(3)は(リスクのである(1)ないがを変更)(3)は(リスクのである(1)なりがき変異により灰分を操により灰分を操により灰分を操により灰分を深いがは深いで分選定に大きないがである(1)ないが代深に次ののである(1)ないが代表により、アクの変更に大きないがである(1)ないが代表により、アクの変更に大きないがである(1)ないがである(1)ないがである(1)ないが代表により、アクの変更に大きないがである(1)	スク	スク リーン mm	スク 30 40 50 30 40 50 30 40 50 30 リーン mm	スク				

□乾燥コンテナによる乾燥

・課題検証結果:20㎡コンテナ⇒**10㎡に変更(地域内需要に合致)**

・乾燥試験検証:2025年6月~実施予定

【課題と今後の取組】

大地域								
	\ C				A.		実施項目	評価項目
Y	X						粒度最適化	
原料	生産	乾燥	運送	供給	消費		チップ化技術	
林地	現地	温泉熱	4 t 車	チップ	+			
支障木 庭木	or BC	バイオマ スシート	or 10 t 車	・丸太・枝条	市町村施設		乾燥技術	・乾燥時間と水分率の推移 ・バイオマスシートの有効性

□研究スケジュール

	付けら	てく	くフ	ン	ユ –	ーノレ	/						
研究 開発	進捗	FY2023				FY2024				FY2025			
項目		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
2 広葉樹チッ	_			課題検討機器選定 設備発	定		設備納品 試運転 粒度分布		実証	・粒度分	布測定	(計画)	
プの粒度最適化の開発					課題検証		機器選定		設備発達	\			
② 林地枝条・ 剪定枝の燃	0			課題検機器選設備発	定 注		設備納品		実証(計画)			
料チップ化 技術の開発				課題検機器選		VI	備発注・終 運転 	州品	実証 (実績)				
広葉樹チッ プ等の乾燥	0				仕様検	討				詞		実証(計	画)
技術の開発				課題検	証・仕様	検討(実	· · · · · · · · · · · · · · · · · · ·						

マ中ル 東米ルか日沼」

- □実用化・事業化の見通し
- <u>小型乾燥チップボイラーへの供給</u> ・小型バイオマスボイラーを用いた熱エネル
- ・木質チップの供給の他、枝条チップの供給
 - も視野に入れた検証を計画

 木質バイオマスボイラー熱エネルギー供給事業 協働実施に関する協定 締結式

連絡先:北アルプス森林組合 中山 隆博 MAIL:alpstfa@jforest-kitaalps.jp